
OOP MIT Fall 2012 

Resource Person: Abdul Mateen  Page 1 of 3 
 

 Lecture 22 

Static Variables, Nested Lists 

In this lecture we will discuss following topics: 

- static variables 
- nested lists 

Before starting discussion on static variables it is useful to revise local variables. Local variables are 
defined within a function. Local variables have following attributes: 

- invisible outside function (can access within defined function) 
- local variables life start with function call and ends when function terminates/ returns 

First point means local variables of one function are not accessible in other function. We may send 
values of multiple local variables as arguments to other functions. However, function can return 
single variable only. Second points is local variable is created when function is called and destroyed 
when function terminates/ return. The longest life function for every program is main function 
which starts with the execution of program and terminates with the termination of program. Hence 
local variables of main method have longest life. Local variables in other functions born and die as 
many times function is called.   

Static variables are declared anywhere within class boundary and outside the functions. Keyword 
"static" is written with static variables. Static variables are visible to every function of the class. 
Writing private may stop their access outside the class. Otherwise outside class we may access 
them static variables of other class with class name followed by period, followed by variable name: 

class One{ 
 static int n=10; 
 ... 
} 

class Two{ 
 public static void main(String a[]){ 
  ?ln(One.n); 
 } 
} 

Any function of the class can access and change value of static variable. Therefore at one side this is 
convenience to share variables among functions of class at other side this is problem for debugging. 
A situation where you have to trace why output is not accurate? Anyhow in this lecture we will 
discuss use of static variables. For this we will discuss a scenario. Suppose we want to make address 
book. Address book has contacts. A contact has name, address, email, mobile no. We have to store 
many contacts. Therefore we have to use array and this is clearly example of parallel arrays. Here 
we need four arrays because there are four attributes. Sample data is shown below, I will share file 
of 35000 contacts, free available from internet:  

FirstName Address Phone Email 

Cara Hingst 1717 Elm Hill Pike 615-883-8408 cara@hingst.com 

Diane Ort 3 Embarcadero Ctr 415-393-6166 diane@ort.com 

Zane Opunui 416 Park St 434-296-3666 zane@opunui.com 

Lea Knighton 3202 W Charleston Blvd 
Bldg 

702-878-2130 lea@knighton.com 

Patsy Rezac 4 W Main St 828-524-5325 patsy@rezac.com 

Lorene Taglauer 2 Bridge St 401-861-6066 lorene@taglauer.com 

Dessie Diekrager 403 Charles St 301-870-8720 dessie@diekrager.com 

Samuel Monn 811 S Bellview Ave 856-829-9200 samuel@monn.com 

Darwin Howington 201 E 5th St 620-231-1773 darwin@howington.com 

Data available on: http://www.briandunning.com/sample-data/ 

http://www.briandunning.com/sample-data/


OOP MIT Fall 2012 

Resource Person: Abdul Mateen  Page 2 of 3 
 

In address book we have following operations mainly: 

1. add new contact 
2. search existing contact by any field 
3. remove existing contact 
4. update existing contact 
5. show all contacts of address book 

Here we are assuming that maximum capacity of contacts is 200 as our mobiles have something 
similar. However, current count of contacts may vary with operations of add and remove. 
Therefore, we will take a variable currentSize. Now we have 5 static variables in our class:  

class AddressBook{ 
 public static String name[]=new String[200];  
 public static String add[]=new String[200];  
 public static String mob[]=new String[200];  
 public static String email[]=new String[200];  
 public static int currentSize=0; 
} 

Let start discussion with operations required. First operation is add. Add operation requires a 
contact and it will add it into the static variable so that it become available for all functions. Add 
operation will simply place new contact at current size and will increment current size by 1: 

public static void add(String n, String a, String m, String em){ 
 name[currentSize]=n;  
 add[currentSize]=a;  
 mob[currentSize]=m;  
 email[currentSize]=em;  
 currentSize++; 
} 

Student may add if condition to check that current size remain below actual array size, and your 

function may return boolean value true and false. If current size is below actual size record will be 

added and true value is sent; whereas; otherwise record is not added and false value is sent back. 

Next we will discuss searchByName function. If name is found complete record will be shown: 

public static void searchByName(String n){ 
 int i;  
 for (i=0;i<currentSize;i++)  
  if (n.equals(name[i]) 
   ?ln(name[i]+ "\t"+add[i] + "\t"+mob[i] + "\t"+email[i]); 
} 

Student may add similar function to search by other fields like address or mobile or email. Also 

search function can return index instead of printing record. Modify function can be made similarly 

by replacing print statement with new value assignment. A little bit tricky operation is delete or 

remove. This function will again proceed in similar way as search but in order to delete it will do 

following tasks. Copy last record to current than reduce current size by 1:  

public static void remove(String n){ 
 int i;  
 for (i=0;i<currentSize;i++)  
  if (n.equals(name[i]){ 



OOP MIT Fall 2012 

Resource Person: Abdul Mateen  Page 3 of 3 
 

   name[i]=name[currentSize]; 
   add[i]=add[currentSize]; 
   mob[i]=mail[currentSize]; 
   email[i]=email[currentSize]; 
   currentSize--; 
  } 
} 

Student may think some other way as well but this is the most convenient way to remove as well as 

manage size as well. Lastly show all contacts is pretty simpler function. Just use loop and print all 

contacts in single line. Simply if we remove if condition from search operation we will get show all 

function. Create a menu driven main and enjoy the address book. 

Now we will discuss the trickiest but interesting thing of this semester that is nested list. Each of 

them can store other object of ArrayList or Vector as well. Like list of players where record of each 

player is stored in list as well. List of players has record of players where record of each player is 

also a list. Before that we use list as linear list where we can store simple values and for that 

purpose we declare list like: 

 ArrayList<int> marks=new ArrayList<int>(); 

 ArrayList<double> heights=new ArrayList<double>(); 

 ArrayList<String> months=new ArrayList<String>(); 

If we have to add array list as object in array list, we will declare it as: 

 ArrayList<ArrayList> lists=new ArrayList<ArrayList>(); 

Before discussing a sample code it is important to understand why we need nested list. Nested list 

are convenient to pass and return data to other functions. As we may have to send single argument 

instead of multiple arguments and in returning we have no option to return multiple things. A 

sample code is given in last lab, I am pasting same code here: 

class NestedList{ 
 PSVM (String args[]){ 
  ArrayList<String> names; 
  names=new ArrayList<String>(); 
  ArrayList<Integer> marks; 
  marks=new ArrayList<Integer>(); 
  names.add("Zahid"); 
  names.add("Saeed"); 
  names.add("Furrukh"); 
  marks.add(34);marks.add(29); 
  marks.add(37); 
  ArrayList lists=new ArrayList(); 

  lists.add(names); 
  lists.add(marks); 
  showAll(lists); 
 } 
PS void showAll(ArrayList<ArrayList> ls) 
{ 
  ArrayList nm=lists.get(0); 
  ArrayList mk=lists.get(1); 
  int i; 
  for (i=0;i<nm.size();i++) 
   ?ln(nm.get(i)+"\t"+mk.get(i)); 
 } 
} 

 


